Unit Three: Sequences and Series

(Reference: THOMAS CALCULUS, $12^{\text {th }}$ edition)

3.1 Sequences

A sequence $\left\{a_{\mathrm{n}}\right\}$ is a function whose domain is the set of positive integers ($n=1,2,3, \ldots$). For example, the sequence $\left\{1+i^{n}\right\}$ is

Notes:

1- The sequence may be finite or infinite, and defined by a rules.
2 - The index $n=1,2,3, \ldots$, refers to the term's number.

Sequence	Defining Rule
$0,1,2, \ldots, n-1, \ldots$	$a_{n}=n-1$
$1, \frac{-1}{2}, \frac{1}{3}, \frac{-1}{4}, \ldots,(-1)^{n+1} \frac{1}{n}, \ldots$	$a_{n}=(-1)^{n+1} \frac{1}{n}$
$0, \frac{-1}{2}, \frac{2}{3}, \frac{-3}{4}, \ldots,(-1)^{n+1}\left(\frac{n-1}{n}\right), \ldots$	$a_{n}=(-1)^{n+1}\left(\frac{n-1}{n}\right)$
$1,1,2,3,5,8,13,21,34,55,89, \ldots, a_{n-1}+a_{n-2}, \ldots$	$a_{n}=a_{n-1}+a_{n-2}$

3.1.1 Convergent and Divergent Sequences

A sequence is said to be convergent if it approaches some limit. If such a limit does not exist, the sequence is divergent.

eXAMPLE 1 A Convergent Sequence

The sequence $\left\{\frac{i^{n+1}}{n}\right\}$ converges, since

$$
\lim _{n \rightarrow \infty} \frac{i^{n+1}}{n}=0 .
$$

As we see from

$$
-1,-\frac{i}{2}, \frac{1}{3}, \frac{i}{4},-\frac{1}{5}, \ldots
$$

the terms of the sequence spiral toward 0 .

Example 2: $a_{n}=\frac{3 n^{4}+34 n^{3}+14}{2 n^{2}+15 n+8}$ is a divergent sequence.
Example 3: Examine the convergence of $a_{n}=\left(1+\frac{1}{n}\right)^{n}$.
Solution: $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=\lim _{n \rightarrow \infty} e^{n \ln \left(1+\frac{1}{n}\right)}$

$$
\begin{aligned}
& =e^{\lim _{n \rightarrow \infty} n \ln \left(1+\frac{1}{n}\right)} \\
& =e^{\lim _{n \rightarrow \infty} \frac{\ln \left(1+\frac{1}{n}\right)}{\frac{1}{n}}} \\
& =e^{\lim _{n \rightarrow \infty} \frac{\frac{1}{1+\frac{1}{n}} \cdot\left(-\frac{1}{n^{2}}\right)}{-\frac{1}{n^{2}}}} \\
& =e
\end{aligned}
$$

Exercises 10.1 (Page:541)

Which of the sequences $\left\{a_{n}\right\}$ in Exercises 27-90 converge, and which diverge? Find the limit of each convergent sequence.
27. $a_{n}=2+(0.1)^{n}$
28. $a_{n}=\frac{n+(-1)^{n}}{n}$
29. $a_{n}=\frac{1-2 n}{1+2 n}$
30. $a_{n}=\frac{2 n+1}{1-3 \sqrt{n}}$
31. $a_{n}=\frac{1-5 n^{4}}{n^{4}+8 n^{3}}$
32. $a_{n}=\frac{n+3}{n^{2}+5 n+6}$
33. $a_{n}=\frac{n^{2}-2 n+1}{n-1}$
34. $a_{n}=\frac{1-n^{3}}{70-4 n^{2}}$
35. $a_{n}=1+(-1)^{n}$
36. $a_{n}=(-1)^{n}\left(1-\frac{1}{n}\right)$
37. $a_{n}=\left(\frac{n+1}{2 n}\right)\left(1-\frac{1}{n}\right)$
38. $a_{n}=\left(2-\frac{1}{2^{n}}\right)\left(3+\frac{1}{2^{n}}\right)$
39. $a_{n}=\frac{(-1)^{n+1}}{2 n-1}$
40. $a_{n}=\left(-\frac{1}{2}\right)^{n}$
41. $a_{n}=\sqrt{\frac{2 n}{n+1}}$
42. $a_{n}=\frac{1}{(0.9)^{n}}$

3.2 Infinite Series

For the sequence $\left\{a_{n}\right\}$ an expression of the form $a_{1}+a_{2}+a_{3}+\ldots+a_{n}+\ldots$ is called an infinite series.

For the sequence $\left\{S_{n}\right\}$:
$S_{1}=a_{1}$
$S_{2}=a_{1}+a_{2}$
!
$S_{\mathrm{n}}=a_{1}+a_{2}+\ldots+a_{n}=\sum_{k=1}^{n} a_{k}$
the sequence $\left\{S_{n}\right\}$ is called the sequence of partial sums of the series. If this sequence converges to a limit L, we say that the series is converges, and that its limit is L, or $a_{1}+a_{2}+\ldots+a_{n}+\ldots=\sum_{n=1}^{\infty} a_{n}=L$
if this sequence does not converge, we say that the series diverges.
An easy example of a convergent series is

$$
\sum_{n=1}^{\infty} \frac{1}{2^{n}}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\cdots
$$

The partial sums look like $\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \frac{15}{16}, \cdots$, and we can see that they get closer and closer to 1 .

3.3.1 Geometric Series

In this type of series, the ratio of each consecutive terms $\left(a_{n+1} / a_{n}\right)$ is a constant.
For the geometric sequence $a, a r, a r^{2}, \ldots, a r^{n-1}, \ldots$, the corresponding geometric series is $a+a r+a r^{2}+\ldots, a r^{n-1}+\ldots$, in which a and r are fixed real numbers and $a \neq 0$.
The $n^{\text {th }}$ term of this series is $a_{n}=a r^{n-1}$.

3.3 Convergence Tests of Series

3.3.1 Geometric Series Test

The geometric series $S_{n}=\sum_{n=1}^{\infty} a r^{n-1}$ is:
1- Convergent to the sum $\frac{a}{1-r}$, if $|\mathrm{r}|<1$ (or $-1<r<1$).
2- Divergent otherwise ($|r| \geq 1$).

a	r	Geometric series	
9	$1 / 3$	$9+3+1+1 / 3+1 / 9+\cdots$	Convergent
1	$-1 / 2$	$1-1 / 2+1 / 4-1 / 8+1 / 16-1 / 32+\cdots$	
3	1	$3+3+3+3+3+\cdots$	Divergent
3	-1	$3-3+3-3+3-\cdots$	
4	10	$4+40+400+4000+40,000+\cdots$	

Exercises 10.2 (Page:551)

In Exercises 15-18, determine if the geometric series converges or diverges.
If a series converges, find its sum.
15. $1+\left(\frac{2}{5}\right)+\left(\frac{2}{5}\right)^{2}+\left(\frac{2}{5}\right)^{3}+\left(\frac{2}{5}\right)^{4}+\cdots$
16. $1+(-3)+(-3)^{2}+(-3)^{3}+(-3)^{4}+\cdots$
17. $\left(\frac{1}{8}\right)+\left(\frac{1}{8}\right)^{2}+\left(\frac{1}{8}\right)^{3}+\left(\frac{1}{8}\right)^{4}+\left(\frac{1}{8}\right)^{5}+\cdots$
18. $\left(\frac{-2}{3}\right)^{2}+\left(\frac{-2}{3}\right)^{3}+\left(\frac{-2}{3}\right)^{4}+\left(\frac{-2}{3}\right)^{5}+\left(\frac{-2}{3}\right)^{6}+\cdots$

3.3.2 Integral Test

Let $\left\{a_{n}\right\}$ be a sequence of positive terms. Suppose that $a_{n}=f(n)$, where f is a continuous, positive, decreasing function of x for all $x \geq N$ (N a positive integer). Then the series $\sum_{n=N}^{\infty} a_{n}$ and the integral $\int_{N}^{\infty} f(x) d x$ both converge or both diverge.

EXAMPLE 1 Show that the p-series

$$
\sum_{n=1}^{\infty} \frac{1}{n^{p}}=\frac{1}{1^{p}}+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\cdots+\frac{1}{n^{p}}+\cdots
$$

(p a real constant) converges if $p>1$.
Solution If $p>1$, then $f(x)=1 / x^{p}$ is a positive decreasing function of x. Since

$$
\begin{aligned}
\int_{1}^{\infty} \frac{1}{x^{p}} d x & =\int_{1}^{\infty} x^{-p} d x=\lim _{x \rightarrow \infty}\left[\frac{x^{-p+1}}{-p+1}\right]_{1}^{x} \\
& =\frac{1}{1-p} \lim _{x \rightarrow \infty}\left(\frac{1}{x^{p-1}}-1\right) \\
& =\frac{1}{1-p}(0-1)=\frac{1}{p-1}
\end{aligned}
$$

the series converges by the Integral Test.

EXAMPLE 2 The series $\sum_{n=1}^{\infty}\left(1 /\left(n^{2}+1\right)\right)$ is not a p-series, but it converges by the Integral Test. The function $f(x)=1 /\left(x^{2}+1\right)$ is positive, continuous, and decreasing for $x \geq 1$, and

$$
\begin{aligned}
\int_{1}^{\infty} \frac{1}{x^{2}+1} d x & =\lim _{x \rightarrow \infty}[\arctan x]_{1}^{x} \\
& =\lim _{x \rightarrow \infty}[\arctan x-\arctan 1] \\
& =\frac{\pi}{2}-\frac{\pi}{4}=\frac{\pi}{4}
\end{aligned}
$$

Exercises 10.3

Applying the Integral Test
Use the Integral Test to determine if the series in Exercises 1-10 converge or diverge. Be sure to check that the conditions of the Integral Test are satisfied.

1. $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$
2. $\sum_{n=1}^{\infty} \frac{1}{n^{0.2}}$
3. $\sum_{n=1}^{\infty} \frac{1}{n^{2}+4}$
4. $\sum_{n=1}^{\infty} \frac{1}{n+4}$
5. $\sum_{n=1}^{\infty} e^{-2 n}$
6. $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}}$
7. $\sum_{n=1}^{\infty} \frac{n}{n^{2}+4}$
8. $\sum_{n=2}^{\infty} \frac{\ln \left(n^{2}\right)}{n}$
9. $\sum_{n=1}^{\infty} \frac{n^{2}}{e^{n / 3}}$
10. $\sum_{n=2}^{\infty} \frac{n-4}{n^{2}-2 n+1}$

3.3.3 The Ratio Test

Let $\sum a_{n}$ be a series with positive terms and suppose that

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\rho
$$

Then (a) the series converges if $\rho<1$,
(b) the series diverges if $\rho>1$ or ρ is infinite,
(c) the test is inconclusive if $\rho=1$.

EXAMPLE 1 Investigate the convergence of the following series.
(a) $\sum_{n=0}^{\infty} \frac{2^{n}+5}{3^{n}}$
(b) $\sum_{n=1}^{\infty} \frac{(2 n)!}{n!n!}$
(c) $\sum_{n=1}^{\infty} \frac{4^{n} n!n!}{(2 n)!}$

Solution We apply the Ratio Test to each series.
(a) For the series $\sum_{n=0}^{\infty}\left(2^{n}+5\right) / 3^{n}$,

$$
\frac{a_{n+1}}{a_{n}}=\frac{\left(2^{n+1}+5\right) / 3^{n+1}}{\left(2^{n}+5\right) / 3^{n}}=\frac{1}{3} \cdot \frac{2^{n+1}+5}{2^{n}+5}=\frac{1}{3} \cdot\left(\frac{2+5 \cdot 2^{-n}}{1+5 \cdot 2^{-n}}\right) \rightarrow \frac{1}{3} \cdot \frac{2}{1}=\frac{2}{3} .
$$

The series converges because $\rho=2 / 3$ is less than 1 . This does not mean that $2 / 3$ is the sum of the series. In fact,

$$
\sum_{n=0}^{\infty} \frac{2^{n}+5}{3^{n}}=\sum_{n=0}^{\infty}\left(\frac{2}{3}\right)^{n}+\sum_{n=0}^{\infty} \frac{5}{3^{n}}=\frac{1}{1-(2 / 3)}+\frac{5}{1-(1 / 3)}=\frac{21}{2}
$$

(b) If $a_{n}=\frac{(2 n)!}{n!n!}$, then $a_{n+1}=\frac{(2 n+2)!}{(n+1)!(n+1)!}$ and

$$
\begin{aligned}
\frac{a_{n+1}}{a_{n}} & =\frac{n!n!(2 n+2)(2 n+1)(2 n)!}{(n+1)!(n+1)!(2 n)!} \\
& =\frac{(2 n+2)(2 n+1)}{(n+1)(n+1)}=\frac{4 n+2}{n+1} \rightarrow 4
\end{aligned}
$$

The series diverges because $\rho=4$ is greater than 1.
(c) If $a_{n}=4^{n} n!n!/(2 n)!$, then

$$
\begin{aligned}
\frac{a_{n+1}}{a_{n}} & =\frac{4^{n+1}(n+1)!(n+1)!}{(2 n+2)(2 n+1)(2 n)!} \cdot \frac{(2 n)!}{4^{n} n!n!} \\
& =\frac{4(n+1)(n+1)}{(2 n+2)(2 n+1)}=\frac{2(n+1)}{2 n+1} \rightarrow 1
\end{aligned}
$$

Because the limit is $\rho=1$, we cannot decide from the Ratio Test whether the series converges. When we notice that $a_{n+1} / a_{n}=(2 n+2) /(2 n+1)$, we conclude that a_{n+1} is always greater than a_{n} because $(2 n+2) /(2 n+1)$ is always greater than 1. and the nth term does not approach zero as $n \rightarrow \infty$. The series diverges.

3.3.4 The Root Test

Let $\sum a_{n}$ be a series with $a_{n} \geq 0$ for $n \geq N$, and suppose that

$$
\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\rho
$$

Then (a) the series converges if $\rho<1$,
(b) the series diverges if $\rho>1$ or ρ is infinite,
(c) the test is inconclusive if $\rho=1$.

Note: We will need the following fact to solve some problems:
For any positive real number a,

$$
\lim _{n \rightarrow \infty} \sqrt[n]{n^{a}}=\lim _{n \rightarrow \infty} n^{a / n}=1
$$

EXAMPLE Which of the following series converge, and which diverge?
(a) $\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}$
(b) $\sum_{n=1}^{\infty} \frac{2^{n}}{n^{3}}$
(c) $\sum_{n=1}^{\infty}\left(\frac{1}{1+n}\right)^{n}$

Solution We apply the Root Test to each series.
(a) $\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}$ converges because $\sqrt[n]{\frac{n^{2}}{2^{n}}}=\frac{\sqrt[n]{n^{2}}}{\sqrt[n]{2^{n}}}=\frac{(\sqrt[n]{n})^{2}}{2} \rightarrow \frac{1^{2}}{2}<1$.
(b) $\sum_{n=1}^{\infty} \frac{2^{n}}{n^{3}}$ diverges because $\sqrt[n]{\frac{2^{n}}{n^{3}}}=\frac{2}{(\sqrt[n]{n})^{3}} \rightarrow \frac{2}{1^{3}}>1$.
(c) $\sum_{n=1}^{\infty}\left(\frac{1}{1+n}\right)^{n}$ converges because $\sqrt[n]{\left(\frac{1}{1+n}\right)^{n}}=\frac{1}{1+n} \rightarrow 0<1$.

Remarks:

1- If your terms contain factorials, or factorials and $n^{\text {th }}$ powers, the Ratio Test might be helpful.
2- If your terms contain $n^{\text {th }}$ powers, the Root Test may be helpful.
3- If $a_{n}=f(n)$ for some positive, decreasing function and $\int_{a}^{\infty} f(x) d x$ is easy to evaluate, then the Integral Test may work.

In Exercises 1-8, use the Ratio Test to determine if each series converges or diverges.

1. $\sum_{n=1}^{\infty} \frac{2^{n}}{n!}$
2. $\sum_{n=1}^{\infty} \frac{n+2}{3^{n}}$
3. $\sum_{n=1}^{\infty} \frac{(n-1)!}{(n+1)^{2}}$
4. $\sum_{n=1}^{\infty} \frac{2^{n+1}}{n 3^{n-1}}$
5. $\sum_{n=1}^{\infty} \frac{n^{4}}{4^{n}}$
6. $\sum_{n=2}^{\infty} \frac{3^{n+2}}{\ln n}$
7. $\sum_{n=1}^{\infty} \frac{n^{2}(n+2)!}{n!3^{2 n}}$
8. $\sum_{n=1}^{\infty} \frac{n 5^{n}}{(2 n+3) \ln (n+1)}$

Using the Root Test

In Exercises 9-16, use the Root Test to determine if each series converges or diverges.
9. $\sum_{n=1}^{\infty} \frac{7}{(2 n+5)^{n}}$
10. $\sum_{n=1}^{\infty} \frac{4^{n}}{(3 n)^{n}}$
11. $\sum_{n=1}^{\infty}\left(\frac{4 n+3}{3 n-5}\right)^{n}$
12. $\sum_{n=1}^{\infty}\left(\ln \left(e^{2}+\frac{1}{n}\right)\right)^{n+1}$
13. $\sum_{n=1}^{\infty} \frac{8}{(3+(1 / n))^{2 n}}$
14. $\sum_{n=1}^{\infty} \sin ^{n}\left(\frac{1}{\sqrt{n}}\right)$
15. $\sum_{n=1}^{\infty}\left(1-\frac{1}{n}\right)^{n^{2}}$
16. $\sum_{n=2}^{\infty} \frac{1}{n^{1+n}}$
(Hint: $\lim _{n \rightarrow \infty}(1+x / n)^{n}=e^{x}$)
In Exercises 17- , use any method to determine if the series converges or diverges. Give reasons for your answer.
17. $\sum_{n=1}^{\infty} \frac{n^{\sqrt{2}}}{2^{n}}$
18. $\sum_{n=1}^{\infty} n^{2} e^{-n}$
19. $\sum_{n=1}^{\infty} n!e^{-n}$
20. $\sum_{n=1}^{\infty} \frac{n!}{10^{n}}$
21. $\sum_{n=1}^{\infty} \frac{n^{10}}{10^{n}}$
22. $\sum_{n=1}^{\infty}\left(\frac{n-2}{n}\right)^{n}$
23. $\sum_{n=1}^{\infty} \frac{2+(-1)^{n}}{1.25^{n}}$
24. $\sum_{n=1}^{\infty} \frac{(-2)^{n}}{3^{n}}$
25. $\sum_{n=1}^{\infty}\left(1-\frac{3}{n}\right)^{n}$
26. $\sum_{n=1}^{\infty}\left(1-\frac{1}{3 n}\right)^{n}$

